
Dynamic programming in faulty memory
hierarchies (cache-obliviously)∗

Saverio Caminiti1, Irene Finocchi1, Emanuele G. Fusco1, and
Francesco Silvestri2

1 Computer Science Department, Sapienza University of Rome
{caminiti, finocchi, fusco}@di.uniroma1.it

2 Department of Information Engineering, University of Padova
silvest1@dei.unipd.it

Abstract
Random access memories suffer from transient errors that lead the logical state of some bits to
be read differently from how they were last written. Due to technological constraints, caches
in the memory hierarchy of modern computer platforms appear to be particularly prone to bit
flips. Since algorithms implicitly assume data to be stored in reliable memories, they might easily
exhibit unpredictable behaviors even in the presence of a small number of faults. In this paper
we investigate the design of dynamic programming algorithms in faulty memory hierarchies.
Previous works on resilient algorithms considered a one-level faulty memory model and, with
respect to dynamic programming, could address only problems with local dependencies. Our
improvement upon these works is two-fold: (1) we significantly extend the class of problems that
can be solved resiliently via dynamic programming in the presence of faults, settling challenging
non-local problems such as all-pairs shortest paths and matrix multiplication; (2) we investigate
the connection between resiliency and cache-efficiency, providing cache-oblivious implementations
that incur an (almost) optimal number of cache misses. Our approach yields the first resilient
algorithms that can tolerate faults at any level of the memory hierarchy, while maintaining cache-
efficiency. All our algorithms are correct with high probability and match the running time and
cache misses of their standard non-resilient counterparts while tolerating a large (polynomial)
number of faults. Our results also extend to Fast Fourier Transform.

1998 ACM Subject Classification B.8 [Performance and reliability]; F.2 [Analysis of algorithms
and problem complexity]; I.2.8 [Dynamic programming].

Keywords and phrases Unreliable memories, fault-tolerant algorithms, dynamic programming,
cache-oblivious algorithms, Gaussian elimination paradigm.

Digital Object Identifier 10.4230/LIPIcs.xxx.yyy.p

1 Introduction

Random access memories suffer from failures that lead the logical state of some bits to be read
differently from how they were last written. A recent study has analyzed the memory-error
sensitivity of Google’s fleet of commodity servers over a period of nearly two years, observing
an incidence of errors much higher than previously reported in laboratory conditions [26].
Due to low supply voltage and low critical charge per cell, caches in the memory hierarchy

∗ This work was supported in part by the Italian Ministry of Education, University, and Research (MIUR)
under PRIN 2008TFBWL4 national research project AlgoDEEP. The last author was also supported by
the University of Padova under Projects STPD08JA32 and CPDA099949/09.

© S. Caminiti, I. Finocchi, E.G. Fusco, and F. Silvestri;
licensed under Creative Commons License NC-ND

Conference title on which this volume is based on.
Editors: Billy Editor, Bill Editors; pp. 1–12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.xxx.yyy.p
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

2 Dynamic programming in faulty memory hierarchies (cache-obliviously)

of modern computer platforms appear to be even more prone to bit flips than dynamic
random access memories [22], while sophisticated error-correction algorithms are prohibitive
for on-chip caches due to tight constraints on die size. The effect of memory errors is
an important consideration in system design, especially for long-running and large-scale
applications that work on massive data sets. When hardware techniques to detect bit flips
are not available, it is important to design algorithms and data structures that are resilient
to memory faults without incurring significant space/time penalties.

So far, algorithmic research related to memory faults mainly focused on fault-tolerant
sorting networks [25] and on the design of resilient data structures in different (hardly
comparable) models [2, 3, 9]. A variety of results have been recently obtained in a faulty
RAM model introduced in [19], where an adversary can corrupt at most δ memory cells of a
large unreliable memory during the execution of an algorithm. Problems solved resiliently
in the faulty RAM model include sorting [17, 19], dictionaries [5, 18], priority queues [23],
counting [7], K-d Trees [21], dynamic data structures [15], and local-dependency dynamic
programming [8]. All these works focus on a one-level faulty memory: the only exception
is [6], which investigates the connection between fault tolerance and I/O-efficiency in the
external memory model [1], addressing resilient dictionaries, priority queues, and sorting.
We remark that external memory (and, similarly, cache-aware) algorithms often crucially
depend on the knowledge of hardware parameters, such as block or cache line size, and may
not adapt well to different memory hierarchies. Cache-oblivious algorithms [20] overcome
this issue: they are designed in a two-level ideal-cache model with no explicit dependencies
on hardware parameters, and can therefore adapt simultaneously to all levels of the memory
hierarchy (see [16] for a survey). To the best of our knowledge, no work but [6] proposes
algorithms that are both resilient and cache-efficient. These two requirements pose indeed
conflicting challenges: resilient algorithms typically use data replication, which might result
in poor spatial locality, and perform error detection and recovery strategies throughout the
computation, which might result in poor temporal locality.

Hierarchical faulty memory model. To analyze the resiliency of algorithms to faults
that take place anywhere in the memory hierarchy, we combine the notions of fault-tolerance
and cache-obliviousness extending the faulty RAM model [19] and the faulty external memory
model [6] in a natural way. We assume the existence of a multilevel unreliable memory.
Overall, at most δ (adversarial) corruptions can take place: each fault can be inserted at
any time during the execution of an algorithm and at any level of the memory hierarchy.
The algorithms can exploit knowledge of δ, which is a parameter of the model, but are
oblivious to hardware parameters of the memory hierarchy and require neither error detection
capabilities nor cryptographic assumptions. Following [20], we analyze the cache complexity
in a two-level ideal-cache model, where both levels may be faulty: a fully associative cache
of size M is partitioned into lines, each consisting of B consecutive words which are always
moved together to/from main memory according to an optimal off-line replacement strategy
(these choices are justified in [20]). Similarly to previous works [3, 6, 17, 18], we assume the
existence of P private memory words that are incorruptible and hidden from the adversary:
the private memory can be used, e.g., in the case of randomized algorithms to store random
values and their derivatives. If P = Θ(1), the private memory can be implemented by a
constant number of dedicated registers and accessed without incurring cache misses. If P is
not constant (e.g., P = Θ(logn), where n is the input size), we assume the existence of a
private memory hierarchy whose largest level has size P : at each hierarchy level, private and
public (unreliable) memory have the same cache line size.

Our results. We investigate the design of dynamic programming algorithms in the hierarch-

S. Caminiti, I. Finocchi, E.G. Fusco, and F. Silvestri 3

ical faulty memory model. Previous work on resilient dynamic programming (in short, DP) [8]
only applies to local dependency DP problems, where updates to entries in the DP table are
determined by the contents of O(1) neighboring cells: this class of problems includes, e.g.,
longest common subsequence and certain kinds of sequence alignment, but excludes many
practically relevant problems such as Floyd-Warshall all-pairs shortest paths. Furthermore,
algorithms in [8] are designed in a one-level memory model and are not cache-efficient. The
contribution of this paper is two-fold. As a first result, we remove the local dependency
assumption, significantly extending, w.r.t. [8], the class of problems that can be solved
resiliently via dynamic programming in the presence of faults. Hinging upon a recursive
framework introduced in [10, 11], we design resilient algorithms for all problems that can be
solved by triply-nested loops of the type that occur in the standard Gaussian elimination
algorithm, most notably all-pairs shortest paths and matrix multiplication. Similar results
also apply to the Fast Fourier Transform. We remark that even checking the correctness of
dynamic programming computations for non-local problems has been regarded as an elusive
goal for many years. All our algorithms are correct with high probability, are parametric in
the private memory size, and can tolerate a polynomial number of faults while still matching
the running time of their non-resilient counterparts. As a second contribution, our approach
yields the first resilient and cache-oblivious algorithms that can tolerate faults at any level
of the memory hierarchy, while incurring an (almost) optimal number of cache misses. To
obtain our results we introduce some novel techniques which might be of independent interest
in the design of resilient algorithms for different problems.

To exemplify our bounds, consider a classical local-dependency DP problem, i.e., com-
puting a longest common subsequence (LCS) of two sequences of length m and n, with
m ≥ n. We solve LCS resiliently and cache-obliviously in O(nm + δnc/PmP) time and
O(nm/(MB) + δnc/PmP/B) cache misses, where M is the unreliable cache size, P is the
private memory size (bounded by O (logn)), B is the number of words in a cache line, δ
is an upper bound on the number of faults, and c < P is a small constant. Notice that
Ω(nm/(MB) + δm/B) is a lower bound on the number of cache misses in the hierarchical
faulty memory model [11], and that nc/P = Θ(1) when P = Θ(logn). Our algorithm matches
the Θ(mn) running time of its non-resilient counterpart as long as δ = O(n1−c/P /P), offering
a full spectrum of tradeoffs between private memory size and number of faults. For instance,
when P = Θ (logn), we can tolerate up to δ = O(n/ logn) faults and incur a number of
cache misses that is either optimal, if δ is also bounded by O(n/(M logn)), or at most a
factor of logn away from optimal. Even when P = Θ(1), the algorithm can still tolerate a
polynomial number of faults within the same bounds of its non-resilient counterpart. Note
that the resilient LCS algorithm from [8] incurs Θ(nm/B) cache misses, even without faults.
Paper organization. After some preliminaries, in Section 3 we introduce the main tools
that will allow us to achieve resiliency and cache-efficiency simultaneously: this section is
intended as an overview of our techniques, while the algorithms are detailed in Section 4
(which focuses on local-dependency DP problems) and in Section 5 (devoted to the extension
to non-local problems). Due to lack of space, proofs of several results and some detailed
description are omitted and will appear in the full version of the paper.

2 Preliminaries

Recursive dynamic programming [10, 11]. Our approach hinges upon a recursive
framework for dynamic programming, introduced in [10, 11], that we briefly describe here
for completeness. We refer to [10, 11] for a detailed description and analysis. Let X and Y

4 Dynamic programming in faulty memory hierarchies (cache-obliviously)

be two sequences of length n and m, respectively (w.l.o.g., let m ≥ n). As an example we
consider the LCS problem, whose standard DP solution is based on the following recurrence:

`[i, j] =

 0 if i = 0 or j = 0
`[i− 1, j − 1] + 1 if i, j > 0 and xi = yj
max{`[i, j − 1], `[i− 1, j]} if i, j > 0 and xi 6= yj

(1)

where `[i, j] is the length of a longest common subsequence of prefixes 〈x1, . . . , xi〉 and
〈y1, . . . , yj〉. Values ` can be stored in a DP table C of size (n+ 1)× (m+ 1), and a longest
common subsequence of X and Y can be obtained by computing a traceback path starting
from entry C[n,m], according to Equation 1.

Let C[i, j][h, k] be the subtable of the dynamic programming table C ranging from row
i to row j and from column h to column k. Let vectors L = C[i − 1, j][h − 1, h − 1],
R = C[i, j][k, k], T = C[i− 1, i− 1][h− 1, k], and D = C[j, j][h, k] be the left, right, top, and
down boundaries of the subtable, respectively. Moreover, let 〈xi, . . . , xj〉 and 〈yh, . . . , yk〉 be
the projections of the input sequences X and Y on C[i, j][h, k]. The algorithm presented
in [10, 11] is implemented by two recursive functions, Boundary and Traceback-Path, that
use a divide-and-conquer strategy, logically splitting table C into four quadrants. Boundary
performs a forward computation by recursively solving four subproblems: it returns the
output boundaries (R and D) of a quadrant, starting from the projections of X and Y on
the quadrant and the input boundaries (L and T). Traceback-Path finds the traceback
path π through the DP table C by recursively finding the fragments of the path through
the quadrants it traverses: given the entry point of path π on the output boundaries of a
quadrant, Traceback-Path calls function Boundary to compute the input boundaries of (at
most three) subquadrants, and recursively calls itself to compute the fragments of π traversing
the subquadrants. In [12] the authors also provide a multicore version of the algorithm: this
extension exploits a tiling sequence, depending on the recursion depth, that determines a
subdivision of the DP table into a (not necessarily constant) number of quadrants.
Resilient variables [18]. An r-resilient variable x consists of 2r + 1 copies of a standard
variable. A reliable write operation on x means assigning the same value to each copy.
Similarly, a reliable read means calculating the majority value, which can be done in Θ(r)
time and O(1) space [4], incurring O(r/B+1) cache misses. The majority value is guaranteed
to be correct if r ≥ δ, since at most δ copies can be corrupted. If r < δ, an r-resilient variable
can be corrupted by the adversary, but at the cost of at least r + 1 faults.
Karp-Rabin fingerprints [24]. Given a vector A = 〈a0, . . . , ak〉 and a prime number p,
a Karp-Rabin fingerprint can be defined as ϕA =

∑k
i=0 ai2w(k−i) mod p, where w is the

memory word size. Fingerprint ϕA can be incrementally computed in O(k) time and O(1)
private memory: when a new number ai is revealed, ϕA can be updated in O(1) time using
Horner’s rule and simple modular arithmetics [24].

3 Overview of our techniques

In this section we describe the main tools that will allow us to adapt some cache-oblivious
algorithms to run in the presence of memory faults, while keeping the number of cache misses
bounded. In Section 4 we will show how to combine these tools to make functions Boundary
and Traceback-Path resilient.
Read and write fingerprints. The hierarchical faulty memory model does not provide
fault detection capabilities: hence, we need to guarantee that values read throughout the
computation (from the input sequences and from the DP table) were not tampered since

S. Caminiti, I. Finocchi, E.G. Fusco, and F. Silvestri 5

they were last written. To this aim, we use read and write Karp-Rabin fingerprints. Since
Boundary and Traceback-Path are recursive, we will associate fingerprints to the input
and output data of each call (i.e., to quadrant boundaries and to sequence projections). We
use an independently generated prime number pd for each recursion depth d and denote the
write and read fingerprints of a vector A as ϕA and ϕA, respectively. The correctness of data
stored in A can be checked by reading A, computing ϕA, and comparing its value against the
write fingerprint ϕA produced when A was previously written: if ϕA 6= ϕA, a fault occurred.

Bounding private data. We store fingerprints, primes, and information about recursive
calls in the private memory, whose amount is limited to P memory words. Since Ω(1) data
are necessary per recursion level, we need to limit the depth of the recursion tree, depending
on P . Let c be the number of local variables used by the algorithm and let ρ be the largest
integer such that c ρ ≤ P : notice that ρ = Θ (P). At each call, we split the table into λ× λ
quadrants, where λ = dn1/ρe: this guarantees that private data fits into P memory words.

Lazy fault detection. With non-constant λ and O(1) fingerprints per recursion level,
checking the correctness of the input for all the recursive calls would result in non-negligible
time overhead. Hence, we detect faults lazily and perform fingerprint tests only when all
subproblems have been recursively solved.

Data replication at decreasing resiliency levels. To resume computation after the
detection of a fault, we use r-resilient variables. Since working at resiliency level δ throughout
the computation would asymptotically increase the running time, we exploit a hierarchy of
decreasing resiliency levels, tied with the depth of the recursive call: calls that are deeper
in the recursion tree correspond to smaller subproblems and have a lower level of resiliency.
It is worth noticing that the corruption of r-resilient variables, with r < δ, together with
lazy fault detection, might force the algorithm to perform entire subtree computations on
wrong data. The corruption will be detected only by fingerprints at level r, but the wasted
computation time will be amortized on Θ (r) faults. This will be crucial to bound the total
cost of error recovery.

Amplified fingerprints. We will see in Section 4 that, during the execution of the algorithm,
read and write data access patterns do not necessarily coincide. This is an issue, since updating
a fingerprint ϕA while reading a vector A = 〈a0, . . . , ak〉 according to an arbitrary pattern
could require logarithmic time per access, due to exponentiation (see Section 2). Moreover,
some values are possibly read ω(1) times and should appear in fingerprints tied with different
exponents. To address these issues, we exploit regularities in data access patterns. We
define an amplified write fingerprint as ϕA =

∑k
i=0(ai

∑si
j=1 2wfi,j) mod pd, where si is the

amplifying factor for element ai (i.e., the number of times ai will be read), and values fi,j
are distinct positive integers characterizing the access pattern. The correctness of read data
can be verified by updating the amplified read fingerprint ϕA adding ai2wfi,j during the j-th
reading of ai. In our algorithm, factors 2wfi,j can be computed in O(1) amortized time:
these computations depend on the access pattern and will be therefore discussed later.

4 Recursive local-dependency dynamic programming

We now describe in more details how functions Boundary and Traceback-Path can be
made resilient. We present a cache-efficient implementation in Section 4.1 and its analysis
in Section 4.2. We assume that the input sequences are δ-resilient and that both of them
have length n: the latter assumption can be removed by splitting the longer sequence Y into
dm/ne segments.

6 Dynamic programming in faulty memory hierarchies (cache-obliviously)

(a) (b)

Figure 1 (a) DP quadrants, boundaries, and auxiliary vectors; (b) cache-oblivious traceback path
computation with virtual quadrants.

Insert and extract. Throughout the computation, we repeatedly extract and merge vector
segments, changing their resiliency level and updating their fingerprints, by means of two
auxiliary functions, called insert and extract. Function insert combines two vectors:
given as input a vector A stored at resiliency level r, a vector A′ stored at resiliency level
r′ ≤ r, two write fingerprints ϕA and ϕA′ , it reads by majority values in A′ and appends
them to A, increasing their resiliency from r′ to r (we assume that enough memory has been
already allocated in A). At the same time, insert updates the write fingerprint ϕA with
the new values and computes a read fingerprint ϕA′ to check correctness of the read data: if
ϕA′ 6= ϕA′ , the function fails. Symmetrically, function extract takes a small vector out of a
larger one.
Resilient boundary. Function Boundary, when called at recursion depth d, receives as
input L, T , and the projections of X and Y , all stored at resiliency level δd = dδ/λde, and
the corresponding write fingerprints produced by its caller (initialization can be appropriately
done at recursion depth 0). All the input vectors have the same length nd = dn/λde
and are stored in the unreliable memory, while fingerprints are private. Similarly to [12],
Boundary recursively solves λ2 subproblems in row-major order. However, the parameters
of the recursive calls are vectors of length nd+1 = dn/λd+1e stored at resiliency level
δd+1 = dδ/λd+1e, together with their write fingerprints, and the output is stored into two
auxiliary (horizontal and vertical) vectors H and V . These vectors have length (λ− 1)nd,
resiliency δd, and are associated with a write and a read fingerprint (see Fig. 1.a). Appropriate
fingerprint tests are also performed during the computation, as detailed below. Consider an
internal quadrant 〈i, j〉, with 1 < i, j < λ. During the recursive call at depth d, the algorithm
works as follows:
Step 1. The input boundaries L′ and T ′, of length nd+1 and resiliency δd+1, are extracted
from V and H, respectively, together with their write fingerprints. The projection Y ′ of
sequence Y on the quadrant is obtained similarly (X ′ is extracted from X only if j = 1).
These extract operations also update the read fingerprints ϕH , ϕV , and ϕY .
Step 2. Given L′, T ′, Y ′, and X ′ (together with their write fingerprints) computed in step

S. Caminiti, I. Finocchi, E.G. Fusco, and F. Silvestri 7

1, the recursive call on quadrant 〈i, j〉 returns the output boundaries D′ and R′, of length
nd+1 and resiliency δd+1, and their write fingerprints ϕD′ and ϕR′ . If this call fails, all data
at resiliency level δd+1 are discarded, the prime number pd+1 associated with recursion level
d+ 1 is renewed, and the computation restarts from step 1. Backup copies of ϕV , ϕH , and
ϕY are used to restore the computation state. The projection of X is extracted once per row
and requires an additional backup fingerprint based on prime number pd.
Step 3. Upon successful termination of the recursive call, the output boundaries D′ and R′
of quadrant 〈i, j〉 are merged with H and V , respectively. If insert fails (due to a fingerprint
mismatch on δd+1-resilient data) the computation is restarted from step 1. Otherwise, the
write fingerprints ϕH and ϕV are updated.
Quadrants on the first column and quadrants on the first row (i.e., j = 1 and i = 1,
respectively) are handled similarly, but L′ and T ′ are extracted from L and T (instead of V
and H), respectively. When computing quadrants on the last row or column, the resulting
output is inserted into the output vectors R and D with resiliency δd.

No fingerprint test is performed at the end of step 1 to establish the correctness of the
extracted subsequences: such a test would require reading V and H from scratch, and would
have a prohibitive running time. The following fingerprint tests are instead (lazily) performed,
depending on the quadrant:

ϕV = ϕV and ϕH = ϕH must hold if 〈i, j〉 = 〈λ, λ〉;
ϕL = ϕL and ϕT = ϕT must hold if 〈i, j〉 = 〈λ, 1〉 or 〈1, λ〉, respectively;
ϕY = ϕY must hold for each i ∈ [1, λ] and j = λ;
ϕX = ϕX must hold if 〈i, j〉 = 〈λ, 1〉.

A mismatch on any of the above tests implies failure of the recursive call at depth d and will
be handled by higher recursive calls (see step 2).
Resilient traceback path. The resilient implementation of Traceback-Path computes
the traceback path segment π traversing a quadrant, stored at resiliency level δd, and its
write fingerprint ϕπ. Traceback-Path calls resilient Boundary to obtain vectors H and
V , containing the output boundaries (at resiliency level δd) of the λ2 quadrants of size
nd+1 × nd+1. Then, it computes π backward from H and V by calling itself on (at most
2λ− 1) subquadrants intersected by π. Segments of π (at resiliency level δd+1) obtained by
the recursive calls are stitched and increased in resiliency using function insert. Fingerprint
mismatches at resiliency level δd cause the current call of Traceback-Path to fail, while
mismatches at level δd+1 or failed subroutine invocations cause the computation to be
repeated. Since the backward access pattern to H, V , L, and T is inverted with respect to
the order in which data are written, we use amplified fingerprints as described in Section 3.
E.g., the read fingerprint of vector H can be efficiently computed by saving in the private
memory a running value 2w(|H|−i−1) mod pd and performing a single multiplication by 2w
per update. We also notice that some quadrants may not be intersected by the traceback
path, but we force the algorithm to read vector segments corresponding to these quadrants
in order to correctly update the read fingerprints.

4.1 Cache-oblivious implementation
To improve temporal locality we access data in Z-order [20], and to improve spatial locality
we shrink the size of data structures in the unreliable memory by recycling space as soon as
written data are no longer needed. While this is quite standard in the design of cache-oblivious
algorithms, it has non-trivial consequences on fingerprint computation.

8 Dynamic programming in faulty memory hierarchies (cache-obliviously)

Amplified fingerprints vs. Z-order. When using the Z-order, read operations on vectors
H and V do not follow the write Z-order in which their write fingerprints ϕH and ϕV have
been produced. We have thus to change the read fingerprint computation to reflect this
different order while maintaining O(1) amortized time per operation. Consider, e.g., the
computation of ϕH for calls at recursion depth d = ρ− 1 (similar reasonings can be applied
to the other vectors and recursion depths). Since d = ρ − 1, we have that nd ≤ λ, each
subproblem is a single entry of the DP table C, and vector H corresponds to a portion of C of
size nd×nd. We use ϕH =

∑|H|−1
x=0 H[x]2wx mod pd as a write fingerprint. The computation

of cell (i, j), requires values from cells (i, j − 1), (i− 1, j), and (i− 1, j − 1). It can be shown
that the ranks of these cells in vector H (say r1, r2, and r3) can be computed from the rank
r of cell (i, j) as r1 = r− left(exp(j)), r2 = r− up(exp(i)), and r3 = r− diag(exp(i), exp(j)),
where exp(k) is the exponent of 2 in the factorization of k, diag(h, k) = up(h) + left(k), and
up and left are defined as follows:

left(k) =
{

1 if k = 0
22k−1 + left(k − 1) otherwise up(k) =

{
2 if k = 0
22k + up(k − 1) otherwise

Since each written value is read three times (from below, from the right, and from the bottom-
right diagonal), we maintain three read fingerprints ϕH,R, ϕH,B , and ϕH,D. While reading,
e.g., cell (i, j− 1) to compute cell (i, j), we update ϕH,R by adding H[r1]2w(|H|−r) · 2−w(r−r1)

mod pd. To make this computation efficient, we precompute the inverse 2−w of 2w in the ring
Zpd , for all selected primes pd. Computing left(exp(j)) for all j ∈ [0, λ − 1] requires O (λ)
sums and divisions by 2, and thus the amortized cost of each computation is constant. Within
the same bound it is also possible to compute 2−w left(exp(j)) mod pd, starting from 2−w
and performing constantly many products for each sum in the computation of left(exp(j)).
Similar reasonings apply to functions up and diag.
Amplified fingerprints vs. virtual quadrants. To optimize cache misses, the length of
vectors H and V , at recursion depth d, should be reduced from λnd to Θ (nd). We adapt
a technique proposed in [11, 12]: at any time, only appropriate subvectors of H and V are
stored, obtaining the missing parts, when necessary, by repeating forward computations. In
more details, the (nd × nd)-size DP table is split into four quadrants of size (nd/2× nd/2),
which are superimposed over the λ× λ submatrices. Let Q be the quadrant containing the
entry point of π: the input boundaries for Q are obtained by applying function Boundary to
at most three quadrants, and the traceback path π is computed by combining the output of at
most three recursive calls of Traceback-Path on the intersected quadrants. It can be shown
that the additional forward computations do not asymptotically increase the running time,
and that the active boundaries stored in H and V (see Fig. 1.b) have length O(nd) [11, 12].

To apply this technique in our setting, two main issues need to be settled. A first
technical issue is that recursion on (nd/2i × nd/2i)-size quadrants cannot be explicit, since
the recursion tree would exceed the amount of private memory when P = o (logn). Hence,
in our implementation (nd/2i × nd/2i)-size quadrants are only virtual: recursive calls of
Traceback-Path on virtual quadrants inside an nd × nd quadrant are simulated iteratively
(this can be done using only a constant number of indexes and variables), while real recursive
calls are performed when nd/2i becomes smaller than nd+1. The resiliency is kept at level δd
during simulated recursion, and drops to δd+1 on real recursive calls.

The main issue is that, with virtual quadrants, the data access pattern becomes more
complex and requires opportunely crafted amplified fingerprints to enable error detection
while keeping negligible the time overhead. Consider as an example vector H and suppose for
the moment that recursive calls of function Traceback-Path are performed, during simulated

S. Caminiti, I. Finocchi, E.G. Fusco, and F. Silvestri 9

recursion, on all quadrants. The access pattern on H is given by a layer of log2 λ levels,
where layer i corresponds to an inverted Z-order on 4i data segments of length nd/2i. Hence,
the number of elements in layer i is nd2i and the overall number of elements preceding the
first element of layer i is given by

∑i−1
j=1 nd2i = nd(2i − 2). Write fingerprints are computed

according to the subdivision in layers. Let l be the current depth of simulated recursion
and let D′ be the output received from a call to function Boundary. Layers involved in
the fingerprint computation are layers l to log2 λ. As elements h ∈ D′ are inserted into
H, ϕH is updated in constant amortized time by adding h

∑log2 λ
i=l 2w(nd(2i−2)+rind/2i+si)

mod pd, where ri is the rank, in layer i, of the segment containing h and si is the number of
elements preceding h in this segment. Vector V and the projections of the input sequences
are handled in a similar way. Updates to read fingerprints are done accordingly to the current
layer on quadrants intersected by the traceback path π, paying attention to work also on
quadrants that are not intersected by π (to keep the read fingerprints consistent with the
write fingerprints).

4.2 Analysis
Let α be the number of faults actually introduced by the adversary during an execution of
the algorithm: notice that α ≤ δ. We recall that the two input sequences have length m and
n, with m ≥ n, and that ρ = Θ(logλ n) = Θ(P) is the recursion depth (see Section 3).

I Theorem 1. Algorithm Resilient-LCS computes, with high probability, a correct longest
common subsequence of the input sequences X and Y .

Proof. If no memory fault is introduced by the adversary, the correctness of the algorithm
follows from [10]. In general, the first call of function Traceback-Path has resiliency δ0 = δ:
this implies that majority values cannot be corrupted and computation is never aborted.
It is not difficult to see that at most ρ+ α selections of prime numbers are needed during
an execution of the algorithm. It follows from [8] that, for any constants k and γ, it is
possible to independently select ρ + α numbers in [mk−1,mk], uniformly at random, so
that all selected numbers are prime with probability at least 1 − (ρ + α)/mγ . We now
consider the probability that fingerprint tests do not fail. It can be shown using standard
techniques that each fingerprint test fails to identify a corrupted variable with probability
at most 1/(σmk−2), for some positive constant σ. Since no more than α variables can
be corrupted by the adversary during the execution of the algorithm, we have that the
overall probability of detecting all faults is at least 1−α/(σmk−2), provided that all selected
numbers are primes. The probability that the algorithm computes the LCS correctly is thus
at least (1 − α/(σmk−2))(1 − (ρ + α)/mγ). By appropriately choosing constants k and γ,
this probability can be made larger than 1− 1/mε, for any ε > 0. J

The following theorem gives the running time of algorithm Resilient-LCS.

I Theorem 2. Algorithm Resilient-LCS requires O(mn + δmnc/PP) time in the worst
case, where P is the available private memory, c < P is a small constant, m and n (with
m ≥ n) are the lengths of the input sequences, and δ is an upper bound on the number of
memory faults.

Proof. Algorithm Resilient-LCS consists of dm/ne calls of Traceback-Path with input
size n. Hence, functions Boundary and Traceback-Path are always called on two strings
of length n. We first consider the time spent in successful computation and then take into
account the time spent in computation discarded due to the detection of some fault. W.l.o.g

10 Dynamic programming in faulty memory hierarchies (cache-obliviously)

we assume n, δ and λ to be powers of two. Since at some recursion depth d the resiliency
level δd = δ/λd may become smaller than one, we suppose vectors to be Θ (δd + 1)-resilient.

Consider a successful computation of function Boundary at recursion depth d with input
size nd and resiliency level δd. If nd ≤ λ, the function requires TB(nd, δd) = O

(
n2
d(δd + 1)

)
time. If nd > λ, the time TB(nd, δd) becomes O

(
n2
d + δdndλ logλ nd

)
since Boundary

performs λ2 recursive calls with input size nd/λ and resiliency δd/λ, and each call requires
O (nd(δd + 1)/λ) time for preparing inputs and fingerprints. Therefore TB(n, δ) = O(n2 +
δnλ logλ n) = O(n2 + δnnc/PP), by definition of λ.

Inducing a recomputation at level 1 ≤ i ≤ k, with k = logλ min{n, δ}, requires δ/λi faults
(there cannot be recomputation at level i = 0 since boundaries are δ-resilient). Hence at
most αλi/δ recomputations can be induced. Since there are λ2i subproblems at level i, the
following summation bounds from above the time spent in unsuccessful computation:

k∑
i=1

αλi

δ

TB (n, δ)
λ2i ≤ TB (n, δ)

k∑
i=1

1
λi
≤ TB (n, δ)

If δ < n, recursive calls done at levels deeper than k are all done at resiliency level 1.
The adversary can induce up to α recomputations at these levels, each of which has cost
bounded by TB (n, δ) /λ2k. Hence the time spent in unsuccessful computation at levels
j ∈ [k + 1, logλ n] is upper bounded by: αTB (n, δ) /λ2k = αTB (n, δ) /δ2 < TB (n, δ) . In all
cases, this time does not exceed the time spent in successful computation.

Consider a successful computation of Traceback-Path at recursion depth d with input
size nd and resiliency level δd. If nd ≤ λ the function requires O

(
n2
d(δd + 1)

)
time. If nd > λ,

the time is O
(
n2
d + ndδdλ

log2 3 logλ nd
)
since the function performs at most 2λ− 1 recursive

calls with input size nd/λ and resiliency δd/λ, and calls at most 3j times function Boundary
with input size nd/2j and resiliency δd + 1, for each 1 ≤ j ≤ log2 λ. As done previously, it
can be shown that the time spent in unsuccessful computation does not exceed the time
spent in successful computation. Multiplying these bounds by dm/ne calls and recalling that
λ = n1/Θ(P), the theorem follows. J

Theorem 2 implies that, when P = Θ (logn) and δ = O(n/ logn), the running time
of algorithm Resilient-LCS is O (nm), matching the running time of the non resilient
cache-oblivious algorithm given in [10]. Furthermore, for any small constant private memory,
the algorithm can still tolerate a polynomial number of faults within the non-resilient bounds.
Theorem 3 gives the cache complexity of algorithm Resilient-LCS.

I Theorem 3. Algorithm Resilient-LCS incurs O(mn/(BM)+δmnc/PP/B) cache misses
in the worst case, where c < P is a small constant.

It follows from Theorem 3 that, when the available private memory is Θ (logn) and
δ = O(n/(M logn)), algorithm Resilient-LCS incurs O(nm/(BM)) misses, which is
optimal for algorithms based on Equation (1), as proved in [10]. Notice that, in the
hierarchical faulty memory model, we have an additional lower bound Ω (δm/B), given by
the number of cache misses needed to read the input sequences at resiliency level δ. Hence,
in any case, the number of cache misses is at most a logn factor away from optimal.

5 Extension to non-local problems

The techniques described in previous sections can be used to extend significantly the class
of problems that are efficiently solvable in the presence of memory faults. Here, we sketch

S. Caminiti, I. Finocchi, E.G. Fusco, and F. Silvestri 11

resilient and cache-efficient algorithms for problems that fit in the Gaussian Elimination
Paradigm [11] and for the Fast Fourier Transform. These algorithms compute the correct
solution with high probability, when up to δ faults are inserted by an adversary.

Gaussian Elimination Paradigm (GEP). This paradigm includes all problems that
can be solved by a triply nested for loop which updates each entry of an n × n input
matrix C at most n times. Some notable examples are matrix multiplication, Gaussian
elimination and LU decomposition without pivoting, and Floyd-Warshall all-pairs shortest
paths. I-GEP [13] is a subclass of GEP which includes all the aforementioned problems. In
I-GEP, it is possible to perform certain reorderings of the updates of matrix C guaranteeing
that the final result remains correct, despite the fact that the intermediate states of C
are different. In [12, 13, 14], cache-oblivious algorithms for I-GEP are provided for single
processors, parallel, and multicore machines. Our algorithm Resilient-I-GEP is based on
the multicore version [12]: it works recursively and relies on a subdivision of the input matrix
into a varying number of square subproblems, depending on the recursion depth.

Let λ = dn1/ρe be defined as in Section 3, where ρ = Θ (P). At recursion depth d,
Resilient-I-GEP receives as input four δd-resilient nd × nd submatrices of C, which are
divided into λ2 submatrices of size nd/λ× nd/λ. Initially, the four matrices coincide with
C, which is stored δ-resiliently. The algorithm performs λ passes on these submatrices,
solving λ3 subproblems in total: the four input matrices of each subproblem are stored
dδd/λe-resiliently. The execution of the λ3 subproblems follows the order described in [13],
which guarantees cache efficiency. For each of the Θ (P) recursive levels, the algorithm
stores in the private memory O (1) fingerprints which are opportunely crafted to reflect the
execution order of the λ3 subproblems and are similar in spirit to the amplified fingerprints
used in Resilient-LCS. Algorithm Resilient-I-GEP solves I-GEP problems correctly with
high probability: its running time is O

(
n3 + n2+c/P δP

)
and the number of cache misses is

O(n3/(B
√
M) + n2+c/P δP/B), where c < P is a suitable small constant. If P = Θ (logn),

the algorithm matches the running time of its non-resilient counterpart when δ = O (n/ logn).
Optimal cache efficiency is achieved for δ = O (n/(M logn)).

Fast Fourier Transform (FFT). Algorithm Resilient-FFT is built on the cache-oblivious
FFT algorithm in [20]. It computes the FFT of a δ-resilient n-size vector by computing 2

√
n

FFTs on dδ/
√
ne-resilient

√
n-size vectors. As usual, each input vector is associated with a

fingerprint stored in private memory. The algorithm is correct with high probability and
requires Θ (log logn) private memory. Its running time is O (n logn+ nδ), while the cache
complexity is O ((n logM n)/B + nδ/B + 1). The running time matches the corresponding
bound of the non-resilient algorithm when δ = O (logn). Optimal cache efficiency is achieved
for δ = O (logM n). For larger values of δ, the algorithm matches the resilient lower bounds
given by the misses and time required for reading the input vector resiliently.

References

1 A. Aggarwal and J. S. Vitter. The input/output complexity of sorting and related problems.
Commun. ACM, 31(9):1116–1127, 1988.

2 Y. Aumann and M. A. Bender. Fault tolerant data structures. In Proc. 37th FOCS, pages
580–589, 1996.

3 M. Blum, W. S. Evans, P. Gemmell, S. Kannan, and M. Naor. Checking the correctness of
memories. Algorithmica, 12(2–3):225–244, 1994.

4 R. S. Boyer and J. S. Moore. MJRTY: A fast majority vote algorithm. In Automated
Reasoning: Essays in Honor of Woody Bledsoe, pages 105–118, 1991.

12 Dynamic programming in faulty memory hierarchies (cache-obliviously)

5 G. S. Brodal, R. Fagerberg, I. Finocchi, F. Grandoni, G. F. Italiano, A. G. Jørgensen,
G. Moruz, and T. Mølhave. Optimal resilient dynamic dictionaries. In Proc. 15th ESA,
volume 4698 of LNCS, pages 347–358, 2007.

6 G. S. Brodal, A. G. Jørgensen, and T. Mølhave. Fault tolerant external memory algorithms.
In Proc. 11th WADS, volume 5664 of LNCS, pages 411–422, 2009.

7 G. S. Brodal, A. G. Jørgensen, G. Moruz, and T. Mølhave. Counting in the presence of
memory faults. In Proc. 20th ISAAC, volume 5878 of LNCS, pages 842–851, 2009.

8 S. Caminiti, I. Finocchi, and E. G. Fusco. Local dependency dynamic programming in the
presence of memory faults. In STACS, volume 9 of LIPIcs, pages 45–56, 2011.

9 V. Chen, E. Grigorescu, and R. de Wolf. Efficient and error-correcting data structures for
membership and polynomial evaluation. In Proc. 27th STACS, volume 5 of LIPIcs, pages
203–214, 2010.

10 R. A. Chowdhury, H. S. Le, and V. Ramachandran. Cache-oblivious dynamic programming
for bioinformatics. Trans. Comput. Biology Bioinform., 7(3):495–510, 2010.

11 R. A. Chowdhury and V. Ramachandran. Cache-oblivious dynamic programming. In Proc.
17th SODA, pages 591–600, 2006.

12 R. A. Chowdhury and V. Ramachandran. Cache-efficient dynamic programming algorithms
for multicores. In Proc. 20th SPAA, pages 207–216, 2008.

13 R. A. Chowdhury and V. Ramachandran. The cache-oblivious gaussian elimination
paradigm: Theoretical framework, parallelization and experimental evaluation. Theor.
Comput. Syst., 47:878–919, 2010.

14 R. A. Chowdhury, F. Silvestri, B. Blakeley, and V. Ramachandran. Oblivious algorithms
for multicores and network of processors. In Proc. 24th IPDPS, 2010.

15 Paul Christiano, Erik D. Demaine, and Shaunak Kishore. Lossless fault-tolerant data
structures with additive overhead. In Proc. 14th WADS, volume 6844 of LNCS, 2011.

16 E. D. Demaine. Cache-oblivious algorithms and data structures. Lecture Notes from the
EEF Summer School on Massive Data Sets, BRICS, 2001.

17 I. Finocchi, F. Grandoni, and G. F. Italiano. Optimal resilient sorting and searching in the
presence of memory faults. Theor. Comput. Sci., 410(44):4457–4470, 2009.

18 I. Finocchi, F. Grandoni, and G. F. Italiano. Resilient dictionaries. ACM Trans. on
Algorithms, 6(1), 2009.

19 I. Finocchi and G. F. Italiano. Sorting and searching in faulty memories. Algorithmica,
52(3):309–332, 2008.

20 M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran. Cache-oblivious algorithms.
In Proc. 40th FOCS, pages 285–298, 1999.

21 Fabian Gieseke, Gabriel Moruz, and Jan Vahrenhold. Resilient k-d trees: K-means in space
revisited. In ICDM, pages 815–820, 2010.

22 B. L. Jacob, S. W. Ng, and D. T. Wang. Memory Systems: Cache, DRAM, Disk. Morgan
Kaufmann, 2008.

23 A. G. Jørgensen, G. Moruz, and T. Mølhave. Priority queues resilient to memory faults.
In Proc. 10th WADS, volume 4619 of LNCS, pages 127–138, 2007.

24 R. M. Karp and M. O. Rabin. Efficient randomized pattern-matching algorithms. IBM J.
Res. Dev., 31(2):249–260, 1987.

25 F. T. Leighton, Y. Ma, and C. G. Plaxton. Breaking the Θ(n log2 n) barrier for sorting
with faults. J. Comput. Syst. Sci., 54(2):265–304, 1997.

26 B. Schroeder, E. Pinheiro, and W. D. Weber. DRAM errors in the wild: a large-scale field
study. Commun. ACM, 54(2):100–107, 2011.

	Introduction
	Preliminaries
	Overview of our techniques
	Recursive local-dependency dynamic programming
	Cache-oblivious implementation
	Analysis

	Extension to non-local problems

